CONTENTS

Pilots Manual (En) ... 2 > 18
Materials ... 19
Line Diagram .. 20
Riser Diagram/Lengths 21
Technical Specifications 21
Thank you for choosing to fly an Ozone Spyder. As a team of flying enthusiasts and adventurers, Ozone’s mission is to build sweet handling, agile paragliders which produce ‘cutting edge’ performance, whilst still keeping you safe in rough air.

All our research and development is concentrated on creating the best handling characteristics possible with optimum security. Confidence and belief in your paraglider is a far greater asset than any small gains in performance - ask any of the Ozone pilots on your local sites, or those who have taken our gliders on ground-breaking adventures and stood on podiums around the world.

Our development team is based in the south of France. This area, which includes the sites of Gourdon, Monaco and Lachens, guarantees us more than 300 flyable days per year. This is a great asset in the development of the Ozone range.

As pilots we fully understand just how big an investment a new paraglider is. We know that quality and value for money are essential considerations when choosing your new paraglider; so to keep costs low and quality high we now build all our wings in our own production plant. This way we can guarantee that all our paragliders meet the same high standards that we expect ourselves.

This manual will help you get the most out of your Spyder. It details information about the Spyder’s design, tips and advice on how best to use it and how to care for it to ensure it has a long life and retains a high resale value.

If you need any further information about Ozone, the Spyder, or any of our products please check www.flyozone.com or contact your local dealer, school or any of us here at Ozone.

It is essential that you read this manual before flying your Spyder for the first time.

Please ensure that this manual is passed on to the new owner if you ever resell this paraglider.

Ozone’s web site, www.flyozone.com carries up-to-date information, including any safety issues or issues specific to your Spyder. Please check it regularly.

Safe Flying
All the team @ Ozone
PARAGRAPHING/Paramotoring is a potentially dangerous sport that can cause serious injury including bodily harm, paralysis and death. Inappropriate use and or abuse of your equipment will increase these risks. Ozone paragliders are only suitable for qualified pilots or those under in-flight supervision. If you are new to the sport, we recommend that you seek professional tuition and learn with a reputable school. Paragliding/Paramotoring is a potentially dangerous sport that can cause serious injury including bodily harm, paralysis and death. Your equipment. Never attempt flying with unsuitable or damaged equipment. Make sure you complete a thorough daily and pre-flight inspection of all of your equipment. Always wear a helmet, ear defenders, gloves and boots. Use only certified paragliders, harnesses with protector and reserve para

The Spyder as a fully reflexed, light-weight paramotoring wing is also very safe and fun across the whole of the sport尧s performance envelope. The A riser is covered with a blue coloured webbing for easy identification. See page 21.

Brake Lines
The brake lines have been set carefully during testing. We recommend that you have slightly long brake lines and to fly with a slight bow in them to allow for a quick and easy recovery in the event of a brake line snapping. IMPORTANT: In the unlikely event of a brake line snapping in flight, or a handle becoming detached, the glider can be steered and controlled with the following procedure:
release the trimmers, or do both. Using the speed system has exactly the same effect as releasing the trimmers so it is safe and possible to fly with the trimmers in the standard position whilst using the full range of the speed system.

Unlike the majority of reflex PGs, wings, to increase cruise speed you can use the speed system, release the trimmers, or do both. It is not necessary to release the trimmers before accelerating. Using the speed system has exactly the same effect as releasing the trimmers so it is safe and possible to fly with the trimmers in the standard position whilst using the full range of the speed system.

In turbulent air the reflex profile is very stable. It will resist reasonable levels of turbulence with a high resistance to collapse without pilot input. The faster the wing is flown the more inherent stability there is, as the reflex has a greater effect. In mild turbulence it may be best to not attempt to fly the wing actively and let the profile absorb the turbulence itself, indeed small applications of the brakes can reduce the inherent stability of the profile. However, in very strong turbulence Ozone recommends to return the profile absorb the turbulence itself, indeed small applications of the brakes can reduce the inherent stability of the profile. However, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

Once set up, test the full range of the speed system in calm flying conditions: ensure that both risers are pulled evenly during operation. Fine-tuning can be completed when you are back on the ground.

IMPORTANT: Using the accelerator decreases the angle of attack and can make it more aggressive, therefore using the accelerator near the trimmers so it is safe and possible to fly with the trimmers in the fully slow (neutral) position whilst using the full range of the speed system.

IMPORTANT: If you change the brake pulley position, you MUST re lengthen the brake and TST lines accordingly. If you change the pulley position you must also change the length of the brake lines accordingly, For example moving to the lower setting (as set by the factory) is for low hang point motors whilst the lower setting is for units with higher hang points.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.

IMPORTANT: IMPORTANT: Ozone recommends that whilst the brakes can reduce the inherent stability of the profile, however, in very strong turbulence Ozone recommends to return the wing to the standard position while you sit in your harness. Now adjust the length of the line so that the main bar sits just beneath your seat. You should now be able to hook your heel in to the secondary (lower) loop of the accelerator.

The accelerator must be slack enough to ensure that the front risers are notailer down in normal flight, but not so long that it is impossible to use the full range of the speed system.
The Climb Out

When the air you are in continues flying into wind whilst gaining height. By setting the trimmers to the standard (certified) position you have worked hard on tuning the wing so that it turns tightly but also efficiently, as the ability to climb in a turn is very important for thermalling and ridge soaring whilst free flying. If you use the accelerator system, or the speed bar and return the trimmers to the standard (certified) position.

Normal Flight

At once all the time you can release the trimmers for a faster cruise speed. If your motor has enough power, the Spyder will achieve very good straight line speeds whilst maintaining level flight with trims fully released and full speed bar applied. For better penetration in headwinds and improved glide performance in strong tailwinds, you should fly faster than trim speed by using the accelerator system, or the trimmers. For maximum efficiency whilst flying downwind, release the speed bar and return the trimmers to the standard (certified) position.

Turning

To familiarize yourself with the Spyder your first turns should be gradual and progressive. To make efficient and coordinated turns with the Spyder first look towards the outside of the turn, coordinate your weight shift and use the outer brake. IMPORTANT: Never initiate a turn at minimum speed (i.e. with full brakes on) or under full power in a steep climb as you may risk entering a spin.

Active Flying

In turbulent air the Qzone reflex profile (QZRP) is very stable. It will resist reasonable levels of turbulence without pilot input. The faster the wing is flown the more inherent stability there is as the reflex has a greater effect. Using the speed system has exactly the same effect as releasing the trimmers so it is safe and possible to fly with the trimmers in the standard (certified) position whilst using the full range of the speed system.
In mild turbulence it may be best not to attempt to fly the wing actively and let the profile absorb the turbulence itself, indeed small applications of the brakes can reduce the inherent stability of the profile. However, Ozone recommends you to return the trimmers to the standard position and fly the glider actively. This way, you will be in the best position to react correctly should an incident occur.

The key elements of effective active flying are pitch control and pressure control:

- In very turbulent air, if the glider pitches hard in front of you, use the brakes to hold the glider drops behind you if you release the brakes to allow it to speed up.

- In severe turbulence, flying with a small amount of brake applied (approx. 20cm) will give you tension in the brakes and feedback from the lines. The pressure on the brake when normal pressure is resumed then raises hands back to original position (this must be done smoothly and symmetrically down on the brakes to stall the wing).

- Avoid flying with continuous amounts of brake in rough air as you could inadvertently stall the wing. Always consider your airspeed and set up your landing early, give yourself plenty of options and a safe margin for error and make sure you are headwind when you arrive back at the site.

- Once below 30 metres avoid turning tightly as the glider will not be able to dive to normal flight speed before it is oscillating 90 degrees of bank.

- Allow the glider to fly with speed for your final descent until you are 1 metre above the ground. Apply the brakes slowly and progressively when you feel the glider stall and you are able to step onto the ground.

- In mild turbulence it may be best to not attempt to fly the wing actively but let the profile absorb the turbulence itself, indeed small applications of the brakes can reduce the inherent stability of the profile. However, Ozone recommends you to return the trimmers to the normal slow position for your final approach, mend the trimmers be returned to the normal slow position for your final approach and use the brakes as required. A strong flare may result in the glider climbing forward; if this happens, release the brake handles. As you face the wing pull the baby As down until the tips of the wing fold under.

- Do not use the brakes other than for re-inflation. For directional control while using the Big Ears, you should use weight shift steering as this could induce parachutal or full stalls.

- The OZONE Spyder is not designed for aerobatic flying. The limit must not exceed 90 degrees of banking. The OZONE Spyder is not designed for aerobatic flying. The limit must not exceed 90 degrees of banking.

- Do not pull the Big Ears in with the speed bar on and once the big ears are in you can further increase the sink rate by pulling the ears before final flare. Ozone does not advise you to do this as it could induce parachutal or full stalls.

- IMPORTANT: You can land with the ears (you should release the B-line before you use the Big Ears). This advice is only to do so if the weather is too turbulent or windy due to the risk of a possible stall and lack of precision in steering.

- Big Ears and accelerator

- Once the big ears are in you can further increase the sink rate by pushing on the accelerator bar.

- Never try to pull the Big Ears in with the speed bar on already. This can lead to a major asymmetric deflation.

Landing

The Spyder shows no unusual landing characteristics. We recommend the trimmers be returned to the normal slow position for your final approach. You can land un-powered or powered, here are some tips:

- Always set up your landing early, give yourself plenty of options and a safe margin for error and make sure you are headwind when you arrive back at the site.

- Once below 30 metres avoid turning tightly as the glider will not be able to dive to normal flight speed before it is oscillating 90 degrees of bank.

- Allow the glider to fly with speed for your final descent until you are 1 metre above the ground. Apply the brakes slowly and progressively when you feel the glider stall and you are able to step onto the ground.

- In mild turbulence it may be best to not attempt to fly the wing actively but let the profile absorb the turbulence itself, indeed small applications of the brakes can reduce the inherent stability of the profile. However, Ozone recommends you to return the trimmers to the normal slow position for your final approach, mend the trimmers be returned to the normal slow position for your final approach and use the brakes as required. A strong flare may result in the glider climbing forward; if this happens, release the brake handles. As you face the wing pull the baby As down until the tips of the wing fold under.

- Do not use the brakes other than for re-inflation. For directional control while using the Big Ears, you should use weight shift steering as this could induce parachutal or full stalls.

B-Line Stall

- B-Line Stall is for fast descents in emergency situations only. B-stall is performed by symmetrically pulling down on the B-risers. To initiate the B-stall place your fingers between the lines above the mallons on the B risers. Do not release the brake handles. As you pull down on the B risers the wind speed increases and the glider loses its forward speed but remains open and you will descend at around 6 m/s. If you pull too much B-line the glider may horseshoe and move around a lot. If this happens, release the B risers.

- To exit the B-stall the B-risers should be released symmetrically and in one smooth, progressive motion. The glider then resumes normal forward flight without further input. Check you have forward flight again before using the brakes. IMPORTANT: The pitching movement on exiting the B stall is small but noticeable, the glider is not applying brake to the glider until you are sure that the wing is flying fully again.

Big Ears and spiral dive

Whilst it is possible to enter a spiral dive whilst holding in Big Ears, the high forces applied to the lower lines could exceed the breaking strain of the lines leading to equipment failure! Ozone does not recommend the use of this manoeuvre!

Lineovers

The OZONE Spyder is not designed for aerobic flying. The limit is tied to smoothly tailed 5-siners, commonly known as lineovers. These are executed near the ground.

Warning: Uncoordinated lineovers can lead to large asymmetric collapses, even cravats and therefore should never be executed near the ground.

B-Line Stall

- B-stall is for fast descents in emergency situations only. B-stall is performed by symmetrically pulling down on the B-risers. To initiate the B-stall place your fingers between the lines above the mallons on the B risers. Do not release the brake handles. As you pull down on the B risers the wind speed increases and the glider loses its forward speed but remains open and you will descend at around 6 m/s. If you pull too much B-line the glider may horseshoe and move around a lot. If this happens, release the B risers.

- To exit the B-stall the B-risers should be released symmetrically and in one smooth, progressive motion. The glider then resumes normal forward flight without further input. Check you have forward flight again before using the brakes. IMPORTANT: The pitching movement on exiting the B stall is small but noticeable, the glider is not applying brake to the glider until you are sure that the wing is flying fully again.

Advanced Flight Techniques

Rapid Descent Techniques

Ozone would like to remind you that these manoeuvres should be learnt under the supervision of a qualified instructor and always used with caution. Never forget that properly analysing the conditions before launch will help avoid the need to use these techniques.

Big Ears

Ozone recommends you always use Big Ears in the flightings of the Spyder increases its sink rate. This is useful for staying out of cloud or descending quickly. To pull big ears in, first pull the brakes to slow the glider down (as much as each side) until you hear the brake handles in your hand. Pull down the baby A risers until the tips of the wing unfold. Do not use the brakes other than for re-inflation. For directional control while using the Big Ears, you should use weight shift steering as this could induce parachutal or full stalls.

IMPORTANT: You can land with the ears (you should release the B-line before you use the Big Ears). This advice is only to do so if the weather is too turbulent or windy due to the risk of a possible stall and lack of precision in steering.

Big ears and accelerator

Once the big ears are in you can further increase the sink rate by pushing on the accelerator bar.

NEVER try to pull the Big Ears in with the speed bar on already. This can lead to a major asymmetric deflation.

Wingovers

The OZONE Spyder is not designed for aerobic flying. The limit is tied to smoothly tailed 5-siners, commonly known as lineovers. These are executed near the ground.

Warning: Uncoordinated lineovers can lead to large asymmetric collapses, even cravats and therefore should never be executed near the ground.

B-Line Stall

- **B-Line Stall** is for fast descents in emergency situations only. B-stall is performed by symmetrically pulling down on the B-risers.

- To initiate the B-stall place your fingers between the lines above the mallons on the B risers. Do not release the brake handles. As you pull down on the B risers the wind speed increases and the glider loses its forward speed but remains open and you will descend at around 6 m/s. If you pull too much B-line the glider may horseshoe and move around a lot. If this happens, release the B risers.

- To exit the B-stall the B-risers should be released symmetrically and in one smooth, progressive motion. The glider then resumes normal forward flight without further input. Check you have forward flight again before using the brakes. IMPORTANT: The pitching movement on exiting the B stall is small but noticeable, the glider is not applying brake to the glider until you are sure that the wing is flying fully again.

Lineovers

The OZONE Spyder is not designed for aerobic flying. The limit is tied to smoothly tailed 5-siners, commonly known as lineovers. These are executed near the ground.

Warning: Uncoordinated lineovers can lead to large asymmetric collapses, even cravats and therefore should never be executed near the ground.

B-Line Stall

- **B-Line Stall** is for fast descents in emergency situations only. B-stall is performed by symmetrically pulling down on the B-risers.

- To initiate the B-stall place your fingers between the lines above the mallons on the B risers. Do not release the brake handles. As you pull down on the B risers the wind speed increases and the glider loses its forward speed but remains open and you will descend at around 6 m/s. If you pull too much B-line the glider may horseshoe and move around a lot. If this happens, release the B risers.

- To exit the B-stall the B-risers should be released symmetrically and in one smooth, progressive motion. The glider then resumes normal forward flight without further input. Check you have forward flight again before using the brakes. IMPORTANT: The pitching movement on exiting the B stall is small but noticeable, the glider is not applying brake to the glider until you are sure that the wing is flying fully again.

Big Ears and spiral dive

Whilst it is possible to enter a spiral dive whilst holding in Big Ears, the high forces applied to the lower lines could exceed the breaking strength of the lines leading to equipment failure! Ozone does not recommend the use of this manoeuvre!
SPIRAL DIVES

If you turn your Spyder in a series of tightening 360’s it will enter a spiral dive. This will result in rapid height loss. To initiate a spiral, look into the dive direction you want to enter. As the spiral develops the accelerator will pull down on the inside brake. The Spyder will first turn almost 360 degrees before it drops into the spiral. Once in the spiral you may apply a little outside brake to keep the outer wing tip pressured and inflated.

Safe descent rates of 8m/s (1500 ft/min approx.) are possible in spiral dives, but at these rates the associated high speeds and G-forces can be disorientating, so pay particular attention to your altitude.

To exit the spiral dive, return your weight shift to a central position and then slowly apply opposite input on the brake. As the Spiral decreases the outside brake will allow it to continue to turn until enough energy is lost for it to return to level flight without an excessive climb and surge. The Spyder shows no tendency to remain locked in a spiral dive; however some parameters could interfere with its behaviour. These might include: wrong settings of the chest strap (too wide); total weight in flight outside of the certified weight range, or being in a symmetrical collapse.

DEFLECTIONS

Due to the flexible form of a paraglider, turbulence may cause a portion of the wing to suddenly collapse. This can be anything from a small 30% (asymmetric) collapse to a complete (symmetric) collapse.

If you have a collapse, the first thing to do is to control your direction. You should fly away from the ground or obstacles and other pilot. Asymmetric collapses should be controlled by weight shifting away from the collapse and applying enough brake to control your wing.

Once a glide is deflected it is effectively a smaller wing, so the wing loading and stall speed are higher. This means the glider will spin or stall before it returns to level flight. In your efforts to stop the glider turning towards the collapsed side of the wing you must be very careful not to stall the side of the wing that is still flying. If you are unable to stop the glider turning without exceeding the stall point then allow the glider to turn whilst you reinflate the collapse.

If you have a deflection which does not spontaneously reinflate, maybe use a long smooth progressive pump on the deflected side. This pumping action should take about 2-3 seconds per pump. Pumping too slow and fast will not reinflate the wing and pumping too slow might take the glider close to, or beyond, the stall point. Symmetrical collapses reinflate without pilot input, however 15 to 20cm of brake applied symmetrically will speed the process. After a successful deflection always consider your airspeed. Make sure the glider is not in parachutal stall before making any further inputs.

If your wing collapses in accelerated flight, immediately release the accelerator and manage the collapse using the same methods described above.

CRAVATS

If the tip of your wing gets stuck in the lines, this is called a ‘cravat’. This can make your glider go into a spiral, which is difficult to control. The first step is to stabilise the glider into normal flight, i.e. get control of your direction and then think of what you can do to relieve the cravat. You may need to use opposite weight shift and apply a small amount of outside brake to keep the outer wing tip pressured and inflated. If you are unable to stop the glider turning without exceeding the stall point then allow the glider to turn whilst you reinflate the collapse.

If it is a very large cravat and the above options have not worked then you may have to return to level flight. If there is no airspeed and you are unable to control it, you should throw your reserve parachute whilst you still have enough altitude.

DEFLECTIONS

In SIV only trim speed collapses should be performed. Due to the nature of the profile and tab positioning it is unsuitable for performing induced accelerations with the addition of collapse lines. All other manoeuvres are permitted.

ACROBATIC / SIV FLYING

The Spyder has been designed as a beginner/intermediate PPG wing and is not suitable for acrobatic manoeuvres. A specific standard of certification for acrobatic flying has not been set up yet. Ozone wings although designed to the highest standards will not be suitable for acrobatic manoeuvres. Ozone strongly recommend you do not attempt this style of flying.

During SIV only trim speed collapses should be performed. Due to the nature of the profile and tab positioning it is unsuitable for performing induced accelerations with the addition of collapse lines. All other manoeuvres are permitted.

ACROBATIC / SIV FLYING

The Spyder has been designed as a beginner/intermediate PPG wing and is not suitable for acrobatic manoeuvres. A specific standard of certification for acrobatic flying has not been set up yet. Ozone wings although designed to the highest standards will not be suitable for acrobatic manoeuvres. Ozone strongly recommend you do not attempt this style of flying.
Cleaning

Any kind of wiping/scratching can damage the coating of the cloth. We recommend for cleaning your Spyder, you use a soft cloth dampened only with water and to use gentle movements little by little across the surface. Never use any detergent or chemical cleaners.

Storage and Transport

Always store all your flying equipment in a dry room, protected from direct heat. Your wing should be dry before being packed away. Moisture, heat and humidity are the worst elements for damaging your glider. Storing a damp glider in your car under the sun would be terrible for example.

If you land in salt water, you must first rinse it thoroughly with clean fresh water. Dry the wing completely, preferably out of the sun, in the wind. Never use a hair dryer, etc.

Take care that no insects get packed away with the wing. They may eat the cloth and make holes in a bid to escape. They can also leave acidic deposits if they die and decompose.

Transport the wing in the supplied bags and keep away from oils, paints, chemicals, detergents etc.

If you need to dispose the wing, do so in an environmentally responsible manner. Do not dispose of it with the normal household waste.

IMPORTANT: Never pack away or store your glider wet.

Wing Repairs

Amateur repairs can do more harm than good. Always let a registered dealer or the manufacturer carry out major glider repairs.

If you damage the sail:
If the rip is small, you can fix it yourself. You’ll find all the materials in the repair kit you need. The fabric can be simply mended with the sticky rip stop / spinnaker tape.

CARING FOR YOUR SPYDER

Packing

To prolong the life of your wing and to keep the plastic reinforcements in the best possible condition it is very important to pack the wing carefully.

Ozone strongly recommends to use the concertina packing method exactly as shown so that all of the cells rest alongside each other and the plastic reinforcements are not unnecessarily bent. Using the Ozone Saucisse will help preserve the life of the wing and aid with the speed and ease of packing.

1. Lay mushroomed wing on the ground. It is best to start from the mushroomed position as this reduces the dragging of the leading edge across the ground.

2. Group LE reinforcements with the A tabs aligned, make sure the plastic reinforcements lay side by side.

3. Lay wing on its side and Strap LE...Note the glider is NOT folded in half, it is folded with a complete concertina from tip to tip. It is really important to not stress the middle cell or bend the plastic too tightly.

4. Group together the centre of the wing.

5. Carefully zip up the saucisse pack without trapping any material or lines.

6. Make the first fold after the LE reinforcements. Do not fold the plastic reinforcements, use 3 folds around the LE.

IMPORTANT: Do NOT lay the wing flat on the ground before packing the glider, this will cause abrasion damage to the top surface as you pull the glider towards the middle. ALWAYS pack from a mushroom or lift the wing off the ground when gathering the wing and grouping the leading edge.

Important: Do not fold the glider in the centre, you will bend the plastics, instead pack the wing with a full concertina method from tip to tip before packing into the stuff sac.
Careless ground handling damages many para gliders. Here are:

- Change your main brake lines if they are damaged.

You can order individual lines at www.flyozone.com

If you fly a wrap, you should regularly undo the twisting that appears on the main brake lines. By twisting the lines they become shorter and you can end up with a constant tension in the same way or at the same rate; it is possible that you may have to change part or all of the lines. For this reason it is important to do regular inspections so that you know the exact condition of all of the components of your glider. We recommend that inspections are carried out by a qualified professional.

Porosity is measured with a porosity meter, the time taken by a certain volume of air to go through a certain surface of the cloth. The time in seconds is the result. A measurement is done in a sever al places on the top surface along the span of the glider behind the leading edge.

The tearing resistance of the cloth - A non-destructive test following the TS-108 standard which specifies minimum tear strength for sky diving canopies should be made using a Bettisometer. (B.M.A.A. Approved Patent No. GB. 2270768 Cleve Betts Sails)

Strength of the lines - An upper, middle and lower A-line, along with the glider before applying the inflation. Each line should be tested for strength. Each line is tested to breaking point and the value recorded. The minimum value is 8 G for all lower A lines, B lines and C lines. The added minimum strength for the middle lines and for the top lines should be the same. If the breaking strength is too close to the minimum value calculated, the professional should give a period after which you will have the strength of the lines again.

Lengths of the lines - The overall length of the lines + mid lines + upper lines) has to be checked under 5Kgs of tension. The difference between the measured length and the original length should not exceed +10mm. The changes that could appear from age, sand, rocks etc. and ground handling in strong winds will accelerate the aging process.

When cutting out the patch remember to allow ample overlap around the tear and round the corners of the patch.

Your Ozone Spyder was designed and trimmed to give the optimum balance of performance, handling and safety. Any modification means the glider loses its certification and will also probably be more difficult to fly. For these reasons, DO NOT modify your Spyder in any way.

Caring Tips

- Your Ozone wing has an opening on the trailing edge of the tip, closed using Velcro, called the ‘butt hole’. This has been designed to easily empty all the things which have been accumulating in your wing (sand, leaves, rocks, mobile phones etc.).

- DO NOT slam your Spyder down on the ground leading edge first! This impact puts great strain on the wing and stitching can cumulatively in your wing (sand, leaves, rocks etc.) and ground handling in strong winds will accelerate the aging process.

- DO NOT walk on the wing or lines. DO NOT try to open your wing in strong winds without untangling the lines first - this puts unnecessary strain on the lines.

- DO NOT walk on the wing or lines.

- DO NOT repeatedly inflate the glider and then allow it to crash back down. Try to keep this movement as smooth as possible by moving towards the glider as it comes down.

- DO NOT slam your Spyder down on the ground leading edge first! This impact puts great strain on the wing and stitching can cumulatively in your wing (sand, leaves, rocks etc.) and ground handling in strong winds will accelerate the aging process.

- FLYING in salty air, in areas with abrasive surfaces (sand, rocks etc.) and ground handling in strong winds will accelerate the aging process.

- DO NOT try to open your wing in strong winds without untangling the lines first - this puts unnecessary strain on the lines.

- DO NOT walk on the wing or lines.

- DO NOT repeatedly inflate the glider and then allow it to crash back down. Try to keep this movement as smooth as possible

MAINTENANCE CHECKS

Your wing, like a car, should be technically checked to ensure proper airworthiness. Your wing should be checked by a qualified professional for the first time after 24 months, or after 80 hours. However, if you are a frequent flyer then we recommend you get your glider checked annually.

The checker should inform you about the condition of your glider and if some parts will need to be checked or changed before the next normal service check period. The lines do not age in the same way or at the same rate; it is possible that you may have to change part or all of the lines. For this reason it is important to do regular inspections so that you know the exact condition of all of the components of your glider. We recommend that inspections are carried out by a qualified professional.

We recommend that the gliders aging, if you notice any changes you should have the wing checked before flying again. These are the basic elements of the check up (full details and permissible figures can be found on our website):
Safety is paramount in our sport. To be safe, we must be trained, practised and alert to the dangers around us. To achieve this we must fly as regularly as we can, ground handle as much as possible and take a continuous interest in the weather. If you are lacking in any of those areas you will be exposing yourself to more danger than is necessary.

Flying is an immense subject which takes years to learn, so let your experience build slowly, do not put pressure on yourself, you have plenty of time to learn as many people fly well into old age. If conditions are not good now then pack up and go home, there is always tomorrow.

Do not overestimate your abilities, be honest with yourself. As the wise saying goes, ‘it is better to be on the ground wishing you were in the air, than to be in the air wishing you were on the ground’.

Every year many pilots get hurt launching; do not be one of them. Launching is the time that you are most exposed to danger so practice it as much as possible. Ground handling teaches you to be sensitive to your glider and to understand the feedback it sends you. If you’re good you will be able to confidently and safely launch whilst others struggle and you will be less likely to get hurt and more likely to have a great day’s flying.

Finally, RESPECT the weather, it has more power than you can ever imagine. Understand what conditions are right for your level of flying and stay within that window. Happy, safe flying & enjoy your Spyder.

Team Ozone

OZONE QUALITY & SERVICE

At Ozone we take the quality of our products very seriously, all our gliders are made to the highest standards in our own manufacturing facility. Every glider manufactured goes through a stringent series of quality control procedures and all the components used to build your glider are traceable. We always welcome customer feedback and are committed to customer service. We will always undertake to fix problems not caused by general wear and tear or inappropriate use. If you have a problem with your glider please contact your dealer/distributor who will be able to decide upon the most appropriate action. If you are unable to contact your dealer then you can contact us directly at info@flyozone.com

Ozone Guarantee
Ozone guarantees all of its products against manufacturer’s defects or faults. Ozone will repair or replace any defective product free of charge.

Ozone and its distributors provide the highest quality service and repair, and damage to products due to wear and tear will be repaired at a reasonable charge.

OZONE MATERIALS

All OZONE gliders are made from the highest quality materials available.

Cloth
- Upper-surface: Dominico DOKDO 20D MF / Porcher Skytex 7000 E71
- Lower-surface: Porcher Skytex 7000 E71

Internal ribs
- Dominico DOKDO 30D FM/ Porcher Skytex 7000 E29

Leading-edge reinforcement
- P18 plastic pipe

Lines
- Lower cascade: Edelrid 7343 -190/230
- Middle cascade: Uros DSL - 70/140
- Upper cascade: Uros DSL - 70

Risers and hardware
- Shackles: Link Lites
- Riser webbing: 20mm zero stretch polyester webbing
- Pulleys: Ronstan ball bearing

OZONE LINK LITE CONNECTIONS

To open the Link Lite in order to change lines:

1. Loosen loop that holds the black tag.

2. Feed black tag through loop

3. Pull out Loop.

To re connect the Link Lite connections reverse the above procedure but use 2 turns. Ensure that the connecting loops are correctly and neatly in place before flying.
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>No. of Cells</th>
<th>48</th>
<th>48</th>
<th>48</th>
<th>48</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Area (m²)</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>Projected Area (m²)</td>
<td>17.2</td>
<td>18.9</td>
<td>20.6</td>
<td>22.4</td>
<td>24.1</td>
</tr>
<tr>
<td>Flat Span (m)</td>
<td>10.3</td>
<td>10.39</td>
<td>11.06</td>
<td>11.52</td>
<td>11.95</td>
</tr>
<tr>
<td>Projected Span (m)</td>
<td>7.93</td>
<td>8.32</td>
<td>8.69</td>
<td>9.04</td>
<td>9.39</td>
</tr>
<tr>
<td>Flat Aspect Ratio</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Projected Aspect Ratio</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Root Chord (m)</td>
<td>2.54</td>
<td>2.67</td>
<td>2.79</td>
<td>2.9</td>
<td>3.01</td>
</tr>
<tr>
<td>Glider Weight (kg)</td>
<td>4.0</td>
<td>4.25</td>
<td>4.5</td>
<td>4.75</td>
<td>5.0</td>
</tr>
<tr>
<td>PG Weight Range</td>
<td>30-70</td>
<td>55-80</td>
<td>63-85</td>
<td>80-100</td>
<td>95-120</td>
</tr>
<tr>
<td>PPG (DGAC) Weight Range</td>
<td>55-100</td>
<td>55-105</td>
<td>65-120</td>
<td>80-140</td>
<td>95-160</td>
</tr>
<tr>
<td>DGAC certification</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load test (8G) up to</td>
<td>150kg</td>
<td>150kg</td>
<td>150kg</td>
<td>150kg</td>
<td>150kg</td>
</tr>
<tr>
<td>Load test (5G) up to</td>
<td>229kg</td>
<td>229kg</td>
<td>229kg</td>
<td>229kg</td>
<td>229kg</td>
</tr>
</tbody>
</table>

Non Accelerated

- A 500
- a 490
- B 480
- C 460
- D 440

Fully Accelerated

- A 340
- a 382
- B 423
- C 506
- D 590

Accelerator range - 16cm
Trimmer range - 13cm
22 Trimmer range - 14cm